Loading...

De Onderbreking

Tunnels en veiligheid

Tunnels en veiligheid

Lokale tunnel bediend vanuit verkeerscentrale

Amsterdam, Eerste Coentunnel

Infra die aan de wet voldoet, voelt niet automatisch veilig

Het KPT kan van start

Afstudeeronderzoek: multifunctionele waterkeringen

Noord-Holland, Waterwolftunnel

Werkbare oplossingen door integrale aanpak veiligheid

Chaos creëren om orde te scheppen

Kennisbank

Tunnels en veiligheid

Tunnels zijn wellicht de bekendste voorbeelden van ondergrondse bouwwerken. Het begon in Nederland met afgezonken tunnels om watergangen te kruisen, inmiddels worden ook boor- en landtunnels breed toegepast. Ontwikkelingen in de praktijk vragen om ontwikkeling in kennis en kunde. Ook op het gebied van veiligheid: ondergronds is het waarborgen van veiligheid vaak complexer dan boven de grond.

Nederland is specialist in afgezonken tunnels. Toch is er ook op dit gebied nog voldoende bij te leren. Gezien de hoge leeftijd van de meeste Nederlandse zinktunnels, is renovatie bijvoorbeeld een actuele en dringende opgave, waarover nog veel vragen leven. Daarnaast neemt de complexiteit bij het realiseren van geboorde tunnels toe: in stedelijke gebieden is het prettig als wegen en spoorlijnen ondergronds gaan, maar er is weinig ruimte om te bouwen en de hinder moet minimaal zijn. We willen in complexere situaties ondergronds bouwen, nog dieper en nog dichter bij de bestaande bebouwing.

Veiligheid is dan ook onlosmakelijk met ondergronds bouwen verbonden. Het werken in de grond heeft al snel effect op de omgeving. Bovendien moet de constructie na oplevering veilig te gebruiken zijn. Dat is op zichzelf al een opgave, maar een bijkomende uitdaging is het vooraf aantoonbaar maken van veilig gebruik, en dat in een complex belangenveld. De laatste jaren leidde dat bij tunnels soms tot problemen. Samen met het netwerk wil het COB ervoor zorgen dat nieuwe tunnels voortaan opengaan zonder gedoe.

Lokale tunnel bediend vanuit verkeerscentrale Rijkswaterstaat

Pal naast de A2 Leidsche Rijntunnel ligt de Utrechtse Stadsbaantunnel. Deze gemeentelijke tunnel voor lokaal verkeer werd het eerste jaar na opening lokaal bediend. Inmiddels is de tunnel aangesloten op de verkeerscentrale Midden-Nederland van Rijkswaterstaat. De omzetting was een uitdagend project.

“In 2013 raakte ik bij het project Stadsbaantunnel betrokken”, vertelt Sieb van der Weide, gemandateerd tunnelbeheerder en coördinator ondergrondse infrastructuur van de gemeente Utrecht. “De tunnel was toen al in aanbouw. Het ontwerp voorzag erin dat de tunnel vanuit het lokale bediengebouw boven de zuidelijke tunnelmond door gemeentelijk personeel bediend zou worden. Ik plaatste vraagtekens bij deze keuze, omdat het mij logischer leek de bediening bij de verkeerscentrale van Rijkswaterstaat onder te brengen die al de aangrenzende A2 Leidsche Rijntunnel bediende. Bovendien hadden we als gemeente geen ervaring met tunnels onder Warvw-regime. De Stadsbaantunnel is onze eerste tunnel en naar verwachting komen er de komende jaren ook geen nieuwe tunnels bij.”

“Er bleek eerder ook al over de optie van externe bediening te zijn nagedacht. Zo had het gemeentelijke Bureau Negen Tien – dat verantwoordelijk was voor alle ruimtelijke opgaven in de wijken Leidsche Rijn en Vleuten-De Meern, de wijken negen en tien, en dus ook voor de bouw van de tunnel – geprobeerd om de bediening via Rijkswaterstaat te organiseren. Ook had het lijntjes uitgezet naar de gemeenten Den Haag en Amsterdam en de verkeerscentrale van de Waterwolftunnel. Allemaal zonder het gewenste resultaat. Toen ik het onderwerp eind 2013 op de agenda zette, werd mijn idee positief ontvangen. Aanpassing van het ontwerp tijdens de bouw werd echter door de bouwer en Bureau Negen Tien als ongewenst bestempeld. Dat leidde tot het compromis om de tunnel conform het ontwerp te bouwen en vervolgens, na de opening, te kijken hoe hij op de verkeerscentrale Midden-Nederland van Rijkswaterstaat kon worden aangesloten. Verder werd besloten om de tunnel al direct vanaf de opening door medewerkers van Rijkswaterstaat te laten bedienen vanuit het lokale bediengebouw. In mei 2015 sloten de gemeente Utrecht en Rijkswaterstaat daartoe een convenant waarin deze punten en de samenwerking rond de bediening en bewaking van de tunnel werden vastgelegd.”

Verkenning

“Natuurlijk was dit geen optimale start”, zegt Jasper Kimstra, die met zijn bedrijf Kimpro namens de gemeente Utrecht en Rijkswaterstaat verantwoordelijk was voor het projectmanagement van het technische deel van de omzetting. “Het ontwerp van de tunnel was volledig gericht op lokale bediening en niet op aansluiting op de verkeerscentrale van Rijkswaterstaat. Daardoor moesten we twee complexe technische systemen koppelen die niet op elkaar waren afgestemd. Gelukkig was de gemeente bij het ontwerp wel grotendeels uitgegaan van de Landelijke Tunnelstandaard, waardoor toch tal van onderdelen aansloten op de ontwerpsystematiek van Rijkswaterstaat.”

Links de ‘pergola’ van de zuidelijke ingang van de Stadsbaantunnel met het lokale bediengebouw, rechts het noordelijke bediengebouw van de A2-tunnel. (Foto: Xxx)

“Nadat het convenant was gesloten, is vrij snel een projectteam opgetuigd”, vult Reinier van der Klooster van Rijkswaterstaat Centrale Informatievoorziening aan. Door Rijkswaterstaat Midden-Nederland was Van der Klooster gevraagd als projectmanager mee te werken aan het project. “We zijn begonnen met een verkenning: welke onderdelen zijn al goed en welke technische en organisatorische maatregelen zijn nodig om de tunnel goed te kunnen bedienen? Vervolgens hebben we een functioneel ontwerp gemaakt. Wat hebben we nodig in de centrale als we ervan uitgaan dat zowel de Stadsbaantunnel als de Leidsche Rijntunnel vanaf elk van de acht werkplekken in de verkeerscentrale moet kunnen worden bediend? Hoeveel beeldschermen hebben we dan bijvoorbeeld nodig en hoeveel audiokanalen?”

Aanpassen netwerk

Kimstra: “Bij het vaststellen van de noodzakelijke technische aanpassingen hebben we de technische aansluitvoorwaarden van de verkeerscentrale – het zogeheten universeel koppelvlak verkeerscentrale – de bedieningssystematiek van Rijkswaterstaat en de bijbehorende set van systemen als uitgangspunt genomen. Denk aan de indeling van videoschermen en de manier waarop het bedieningssysteem werkt. We vinden het namelijk belangrijk dat de verkeersleiders in de centrale zowel de Leidsche Rijntunnel als de Stadsbaantunnel intuïtief kunnen bedienen. Tegelijkertijd moeten de verkeersleiders ook in het lokale bediengebouw uit de voeten kunnen, omdat dat als terugvaloptie dient als de centrale uitvalt. Om die reden hebben we daar bijvoorbeeld een aantal joysticks vervangen die net iets anders werkten dan die in de centrale. Verder hebben we in de centrale een aantal werkplekken aangepast omdat die de HD-kwaliteit van de camerabeelden uit de Stadsbaantunnel niet snel genoeg konden verwerken.”

Volgens Kimstra was de grootste en meest ingrijpende maatregel het aanpassen van het netwerk in de tunnel: “We moesten het datanetwerk passend maken op het netwerk van Rijkswaterstaat. Concreet betekende dit dat we alles moesten omnummeren en andere IP-adressen moesten geven. Uiteindelijk ging het om meer dan driehonderd installatieonderdelen. Dat was veel werk en vergde veel controles. Zo bleven we op een gegeven moment foutmeldingen krijgen. Na lang zoeken bleek de firewall dit probleem te veroorzaken.”

“We bleven op een gegeven moment foutmeldingen krijgen. Na lang zoeken bleek de firewall dit probleem te veroorzaken.”

Van der Klooster: “Dit soort voorbeelden laat mooi het verschil zien tussen ICT en een vakgebied als civiele techniek. Als de betondekking in een tunnel ergens een centimeter meer of minder is, is dat meestal niet direct een probleem. In ons vakgebied gaat het om eentjes en nulletjes en als ergens een nulletje wordt doorgegeven terwijl het een eentje moet zijn, gaan direct alle alarmbellen rinkelen.”

‘Pak van mijn hart’

Op 15 december 2016, vrijwel exact een jaar na de opening van de Stadsbaantunnel, was de centrale bediening een feit. Terugkijkend op het project is Van der Weide zeer tevreden: “Door de omzetting hebben we een forse efficiencyverbetering gerealiseerd. De ploeg voor de lokale bediening bestond uit vijftien mensen, terwijl met het onderbrengen van de bediening bij de verkeerscentrale Midden-Nederland daar slechts 2,3 formatieplaatsen voor nodig zijn. De verkeersleiders kunnen de bediening van de Stadsbaantunnel namelijk vrij eenvoudig meenemen bij hun andere werkzaamheden. Een ander belangrijk pluspunt is dat de hulpdiensten blij zijn met de gecombineerde bediening van de Stadsbaantunnel en de Leidsche Rijntunnel, omdat deze de veiligheid van beide tunnels vergroot. Ze vinden het prettig om bij calamiteiten in een van de tunnels vanuit dezelfde centrale te worden aangestuurd en maken bij een calamiteit in de Leidsche Rijntunnel graag gebruik van de calamiteitendoorsteek van de Stadsbaantunnel.”

Ook Kimstra en Van der Klooster kijken met een positief gevoel terug. Van der Klooster noemt de constructieve manier waarop de gemeente en Rijkswaterstaat hebben samengewerkt en Kimstra prijst de manier waarop alle leveranciers in een situatie met verschillende opdrachtgevers hun werk gezamenlijk hebben gedaan. Maar Van der Klooster heeft ’m ook nog wel even geknepen. Hij doelt daarbij op het laatste deel van het project, het testtraject: “Op 4 december hebben we de lokale bediening buiten werking gesteld en de tunnel tijdelijk gesloten. Vervolgens hadden we tien dagen om de nieuwe lokale én centrale bediening op te bouwen en te testen. Dat was heel krap, en achteraf vraag ik me af of we ons niet te veel onder druk hebben laten zetten met de planning.” Ook Van der Weide vond deze periode erg spannend: “Toen het bericht kwam dat de tunnel weer open was en het ook ‘deed’, was dat een pak van mijn hart.”

Amsterdam, Eerste Coentunnel

De Eerste Coentunnel is meer dan veertig jaar oud. (Foto: Kees Stuip Fotografie)

In mei 2013 ging de Tweede Coentunnel open voor het verkeer. Dat was het moment waarop de renovatie begon van de pal ernaast gelegen Eerste Coentunnel. Deze afzinktunnel onder het Noordzeekanaal stamt uit 1966 en moet nodig worden gemoderniseerd om weer vijftig jaar op een goede en veilige manier het autoverkeer over de A10 tussen Amsterdam en Zaandam te kunnen verwerken. De tunnelconstructie wordt gerenoveerd en er worden maatregelen genomen om de luchtkwaliteitsbeheersing te verbeteren. Verder krijgt de tunnel alle verkeers- en tunneltechnische installaties die in de Tweede Coentunnel zijn toegepast om te voldoen aan de eisen van de nieuwe tunnelstandaard.

De renovatie wordt in opdracht van Rijkswaterstaat uitgevoerd door het consortium Coentunnel Company en is onderdeel van het DBFM-contract ‘Capaciteitsuitbreiding Coentunnel’ dat loopt tot 2037. De planning is dat de gerenoveerde tunnel medio 2014 in gebruik wordt genomen. Dan biedt deze tunnel drie vaste rijbanen voor het wegverkeer dat in zuidelijke richting rijdt, van Zaandam naar Amsterdam.

Werkzaamheden

Er is gestart met sloopwerkzaamheden. Alle tegels van de wanden zijn verwijderd evenals stukken beton die niet meer voldeden, het wegdek en alle oude kabels, leidingen en installaties. De wanden zijn voorzien van een onderhoudsarme betonnen afwerklaag en deels van brandwerend materiaal om te zorgen dat de tunnel bij een eventuele brand zijn constructieve integriteit behoudt. Ook de plafonds zijn voorzien van (hergebruikt) hittewerend materiaal.

(Foto: Kees Stuip Fotografie)

Voor het verbeteren van de luchtkwaliteitsbeheersing in de tunnel is de open dakconstructie bij de tunnelmonden vervangen door dichte ‘plafonds’. Verder is een schoorsteen van 25 meter hoog gebouwd die de uitlaatgassen uit de tunnel moet afvoeren. Om de plafonds te kunnen maken, moest een aantal betonnen stempels bij de tunnelmonden worden verwijderd. Een tijdelijke stempelconstructie – die de functie van de stempels overnam – zorgde er tijdens de bouwfase voor dat de hoge wanden niet naar binnen werden gedrukt en de tunnel ondertussen toegankelijk bleef voor het werkverkeer.

Door het verwijderen van de betonnen stempels en andere sloopwerkzaamheden nam het gewicht van de tunnelconstructie tijdelijk fors af. Daardoor bestond de kans dat de constructie door het grondwater omhoog zou worden gedrukt. Om dat te voorkomen, zijn stapels stalen rijplaten als extra gewicht op de tunnelvloer gelegd.

De tunnel wordt voorzien van diverse installaties die zorgen voor een vlotte en veilige doorstroming van het verkeer. Daarbij gaat het om camera’s, matrixborden boven de weg, verplaatsbare informatiepanelen en sensoren in het wegdek die registreren of het verkeer rijdt of stilstaat. Verder krijgt de tunnel ventilatoren die bij brand de rook uit de tunnel afvoeren, brandbluspompen die automatisch aangaan en licht- en geluidsignalen die passagiers richting de vluchtwegen leiden. De aansturing van al deze installaties gebeurt met een geavanceerd bedienings- en besturingssysteem.

Aanpak

Vanwege de korte periode waarin de renovatie en het testen van alle installaties moeten zijn afgerond, is het cruciaal dat alle werkzaamheden in één keer goed gaan. Dat vereist een goede engineering en bouwfasering. De Coentunnel Construction, de uitvoerende organisatie onder de Coentunnel Company, heeft hiervoor ingenieursbureau Sophia Engineering ingeschakeld.

Het ontwerpteam heeft bij de engineering al rekening gehouden met alle installaties en kabels en leidingen, zodat de kans op onaangename verrassingen tijdens de uitvoering minimaal is. Verder is er een driedimensionaal model gemaakt, waarin alle werkzaamheden in de tijd zijn gevisualiseerd. Dit model zorgt er niet alleen voor dat de fasering helder is, maar geeft direct inzicht in de complexe aanpassingen van de betonvormen van de schoorsteenconstructie en laat zien welke raakvlakken er zijn tussen de verschillende werkzaamheden

Infra die aan de wet voldoet, voelt niet automatisch veilig

Ron Beij en Ron Galesloot van de afdeling Risicobeheersing van de regionale brandweer Amsterdam-Amstelland stellen dat ‘veilig volgens de wet’ niet altijd voldoende is, vooral niet op locaties waar sprake is van meervoudig ruimtegebruik. Beij: “De veiligheid van de afzonderlijke infrastructurele componenten – denk aan een tunnel – is meestal wel goed geregeld, maar de integrale veiligheid van deze objecten in hun omgeving laat vaak te wensen over.”

Hun overtuiging dat er meer aandacht moet komen voor integrale veiligheid is ontstaan door hun betrokkenheid bij een aantal grote projecten, waaronder de Noord/Zuidlijn. “Vanuit de brandweer ben ik sinds 1995 bij dit project betrokken”, vertelt Beij. “Toen waren er vooral gesprekken over bouwplannen en contracten. Rond 2000 werd geleidelijk duidelijk hoe de metrolijn eruit zou gaan zien en in 2003 startte de uitvoering. Kort geleden, op 22 juli 2018, is de lijn in gebruik genomen.”

“De nieuwe metrolijn voldoet aan de wet, laat dat duidelijk zijn”, vervolgt Beij. “Alle besluiten over de metrolijn en de stations zijn echter voorafgaand aan de bouw, in de vorige eeuw, genomen. Dat betekent dat de toegepaste veiligheidsfilosofie twintig jaar oud is. Inmiddels denken we heel anders over risico’s en is er door de enorme ontwikkelingen op het gebied van ICT veel meer mogelijk. Ook hanteren we ondertussen andere uitgangspunten en zijn er modernere analyse-instrumenten beschikbaar. En dat is nog los van het feit dat wetgeving hoe dan ook altijd achterloopt op de actualiteit. Tegelijkertijd beseffen we dat het aanpassen van de veiligheidsvoorzieningen tijdens de uitvoering weinig kans zou hebben gemaakt. Tijdens de bouw ben je gebonden aan contracten. Je zou dan contracten moeten openbreken en daar zit niemand op te wachten. Daarom zijn aanpassingen uitgesteld tot na de openstelling.”

Er zijn weinig handvatten in de wet- en regelgeving om de integrale veiligheid tijdens de beheer- en gebruiksfase te onderbouwen.

“Daarmee wordt het niet ineens veel eenvoudiger. Sinds de openstelling hebben we te maken met andere partijen en andere mensen. Na twintig jaar overleggen we nu bijvoorbeeld niet meer met de projectorganisatie, maar met de beheerder van de metrolijn. Verder is er nu sprake van een ander gebruik én andere regelgeving. Zo is niet alleen het Bouwbesluit leidend bij metro’s; ook de Wet lokaal spoor is van toepassing. Deze wet regelt de spoorveiligheid, maar niet de veiligheid op de perrons of in de winkels op de stations. Terwijl een brand in een winkel verstrekkende gevolgen kan hebben. Dit betekent dat er weinig handvatten in de wet- en regelgeving zijn om de integrale veiligheid tijdens de beheer- en gebruiksfase te onderbouwen. Het zit er gewoon niet goed in. Daarin verschillen tram- en metrotunnels duidelijk van wegtunnels. Zo wordt bij wegtunnels de veiligheid na openstelling deels al geregeld met de Rarvw, de Regeling aanvullende regels veiligheid wegtunnels, en de Warvw, de Wet aanvullende regels veiligheid wegtunnels.”

Nieuwe risico’s

Galesloot vult aan: “Naast bovengenoemde problemen – een gedateerde veiligheidsfilosofie bij openstelling en het ontbreken van goede regelgeving voor de beheer- en gebruiksfase – constateren we ook dat de bestaande veiligheidsregelgeving nauwelijks rekening houdt met toekomstige ontwikkelingen en nieuwe risico’s. Denk aan de komst van zelfrijdende voertuigen, vraagstukken rond cybersecurity, de energietransitie en de koppeling tussen allerlei vormen van infrastructuur via het internet of things. Er komen bijvoorbeeld steeds meer elektrische auto’s. Dat is goed voor het milieu, maar als een accu van een Tesla in brand vliegt, kunnen wij die als brandweer nu niet blussen. Dat betekent dat je wellicht extra voorzieningen moet treffen om ook op termijn de veiligheid te kunnen garanderen.”

“Een andere ontwikkeling die van grote invloed is op de veiligheid van de openbare ruimte, is meervoudig ruimtegebruik”, stelt Galesloot. “Vooral in stedelijk gebied worden steeds vaker functies gecombineerd. Een voorbeeld zijn de stations Vijzelgracht en Rokin van de Noord/Zuidlijn, waar de ondergrondse ruimte boven de diepgelegen metrostations wordt benut voor de aanleg van parkeergarages. De vergunningen worden in dit soort gevallen per object verleend, terwijl de veiligheid van de metrostations niet los kan worden gezien van gebeurtenissen in de parkeergarages en omgekeerd. Neem de geplande volautomatische parkeergarage boven station Vijzelgracht. Bij brand in dit soort ‘parkeermachines’ gaan we als brandweer niet naar binnen. Daarom worden ze vaak uitgerust met een automatisch CO2-blussysteem, dat wordt gedimensioneerd op een lege garage. Als dat hier ook gebeurt en er ontstaat brand op een moment dat de garage redelijk vol is, dan is er kans dat het overschot aan CO2 – dat zwaarder is dan lucht – via de doorgangen in het station terecht komt. Dat willen we niet en daarom overleggen we inmiddels over een alternatief blussysteem voor deze parkeergarage.”

Doorsnede van het nieuwe station Vijzelgracht. (Beeld: gemeente Amsterdam)

Ingesloten door rook

Beij: “Een ander voorbeeld is Amsterdam CS. Aan de kant van het IJ liggen hier vier lagen infrastructuur boven elkaar. Op het onderste niveau kruist de Noord/Zuidlijn het treinstation en bevindt zich het nieuwe metrostation. Op het niveau hierboven ligt parallel aan het IJ de Michiel de Ruijtertunnel met twee tunnelbuizen voor wegverkeer. Op het dak van deze tunnel is een winkelcentrum in een hal van het station. En bovenop dit winkelcentrum, op het hoogste niveau, ligt het busstation dat is overdekt door een grote gebogen glazen kap. Tussen de tunnelbuizen van de Michiel de Ruijtertunnel zijn er (rol)trappen die het metro-, trein- en het busstation met elkaar verbinden. Meervoudig ruimtegebruik ten voeten uit!”

Doorsnede van station Amsterdam Centraal aan de IJ-zijde. (Beeld: gemeente Amsterdam)

“Kijk je naar de veiligheid, dan voldoen alle objecten aan de wettelijke eisen. Helaas betekent dit niet dat de combinatie van deze vier objecten ook veilig is. Stel bijvoorbeeld dat in de Michiel de Ruijtertunnel een auto in brand komt te staan. Aangezien in deze tunnel geen ventilatoren zijn aangebracht – dat is niet verplicht voor tunnels met een lengte tussen de 250 en 500 meter – verlaat de rook de tunnel via beide tunnelmonden. De grote glazen kap van het busstation steekt over deze tunnelmonden heen. Daardoor verzamelt de rook zich vanuit twee kanten onder de kap, koelt af en zakt vervolgens via de roltrappen naar beneden richting het lager gelegen winkelcentrum en metrostation. Simulatieberekeningen laten zien dat in zo’n geval binnen enkele minuten grote aantallen mensen ingesloten raken door de rook, waardoor de kans op slachtoffers fors is.”

Meedenken

“Dit soort ongewenste situaties kun je voorkomen door in een vroeg stadium een uitgebreide veiligheidsafweging te maken”, aldus Galesloot. “Voor het project Zuidasdok is bijvoorbeeld vooraf een integraal veiligheidsplan gemaakt dat is meegenomen in het bestuursakkoord en in het tracébesluit. Daardoor is wettelijk vastgelegd dat in iedere fase van dit omvangrijke project rekening moet worden gehouden met de omgeving.”

Beij: “In de praktijk is dit lang niet altijd mogelijk. Immers, de meeste infrastructuur en steden worden niet integraal ontworpen, maar groeien stapsgewijs. Daardoor is het lastig om het geheel te overzien en de integrale veiligheid te blijven garanderen. Ik ben er echter van overtuigd dat we daar wel naar moeten streven. Hoe dat het beste kan, weet ik nog niet.”

Illustratie van het mobiliteitssysteem in lagen volgens de Raad voor de leefomgeving en infrastructuur. (Bron: Van B naar Anders)

Het KPT kan van start

Heeft u kennisvragen over tunnelveiligheid? Binnenkort staan Roel Scholten, Ron Beij en Leen van Gelder klaar om deze te beantwoorden. Zij vormen samen het nieuwe Kennisplatform Tunnelveiligheid, dat de kennisfunctie van de opgeheven Commissie Tunnelveiligheid gaat invullen.

28 oktober 2013

Met de aanstelling van Roel Scholten als coördinator, Ron Beij als expert veiligheidsorganisatie/hulpverlening en Leen van Gelder als expert TTI/civiele bouw begint het Kennisplatform Tunnelveiligheid (KPT) nu echt vorm te krijgen. Het KPT is een gevolg van de wijziging in de tunnelwet die per 1 juli jl. in werking is getreden. Hiermee werd de Commissie Tunnelveiligheid opgeheven: de adviestaak is ondergebracht bij de veiligheidsbeambte en het ministerie van IenM vroeg het COB het KPT in te richten voor de kennistaak.

De mensen van het KPT

Hoe het KPT de kennistaak precies gaat invullen, is nog aan de nieuw aangestelde coördinator en experts om te bepalen. Daarom willen we de heren hierbij graag aan u voorstellen:

Roel Scholten, coördinator

‎Als directeur en consultant bij NedMobiel heeft Roel veel kennis, ervaring en gevoel opgedaan met en voor de diverse actoren die bij een veilige tunnel betrokken zijn, zoals aannemers, tunnelbeheerders, veiligheidsbeambten, beleidsmakers, hulpdiensten en bevoegd gezag. “Ik heb ervaring in zowel de publieke als de private sector en vind het leuk om deze werelden bij elkaar te brengen en goed op elkaar aan te laten sluiten”, aldus Roel.

Hij kent de taal van de politicus én die van de projectmanager, waardoor hij goed kan inschatten wat effecten van beleid zijn in de praktijk, maar ook met welk beleid praktijkvragen kunnen worden beantwoord. Roel: “Ik denk van nature in gezamenlijke kansen en belangen en het geeft me energie om partijen en mensen binnen (en buiten) mijn netwerk in de tunnelwereld aan elkaar te koppelen. De functie van Coördinator bij het Kennisplatform Tunnelveiligheid is hier bij uitstek op gericht.”

Ron Beij, expert veiligheidsorganisator/hulpverlening

Na een studie Moleculaire Wetenschappen heeft Ron Beij de Brandweeracademie afgerond; inmiddels is hij bijna twintig jaar werkzaam bij Brandweer Amsterdam. Ron: “In die twintig jaar heb ik kennis gemaakt met alle aspecten van de brandweer, crisismanagement en hulpverlening. Mijn oorspronkelijke vakgebied is gevaarlijke stoffen, maar ik ben ook actief op de terreinen van (multidisciplinaire) planvorming, Opleiden Trainen en Oefenen (OTO) en risicobeheersing.”

“Ik ben altijd nieuwsgierig naar de oorzaak van gebeurtenissen. In mijn zoektocht naar antwoorden heb ik gemerkt dat er veel kennis is bij tunnelbeheerders, ingenieursbureaus, kennisinstituten en hulpdiensten, maar dat deze werelden zo ver uit elkaar liggen dat er nauwelijks uitwisseling van deze kennis plaats vind”, vertelt Ron. De functie bij het KPT spreekt hem daarom erg aan: “Omdat het KPT onafhankelijk is en zich midden in het kennisdomein positioneert, verwacht ik dat we een gezamenlijk belang hebben om op objectieve basis kennis met elkaar te delen en wellicht te gaan ontwikkelen. Het lijkt mij erg leuk om mede de brug te kunnen gaan slaan tussen die verschillende werelden.”

Leen van Gelder, expert TTI/civiele bouw

“Sinds 1998 ben ik betrokken bij nationale- en internationale infrastructurele projecten en bij de ontwikkeling van verkeersbeheersing en bedienruimten en -systemen voor de Nederlandse verkeerscentrales”, zegt Leen van Gelder, consultant bij Soltegro. Leen heeft zijn ervaring zowel opgebouwd bij de markt (ingenieursbureaus) als bij de overheid (Rijkswaterstaat). Zijn expertisegebieden zijn de centrale bediening (stedelijke, regionale- en verkeerscentrales), verkeerssystemen en technische installaties voor tunnels, bruggen en sluizen.

Leen heeft onder meer via werkgroepen van het COB en het expertnetwerk Veiligheid van NLingenieurs bijgedragen aan het ontwikkelen en verbreden van de kennis op het gebied van TTI. “Als coördinator TTI/Civiele bouw wil ik dit voortzetten door gezamenlijk een kennisplatform tot stand te brengen dat nationaal, maar zeker ook internationaal, de onafhankelijke vraagbaak is voor alle partijen die betrokken zijn bij de realisatie en exploitatie van tunnels. In mijn visie geldt dit zowel voor de specifieke systemen en installaties als bijbehorende processen.”

Multifunctionele waterkering aantoonbaar veilig

De ruimte langs het water is gewild; we willen er wonen en werken, en er verdedigingswerken tegen het water bouwen. Het zou praktisch zijn als we verschillende functies konden combineren. Het afstudeeronderzoek van Jeroen van Mechelen (TU Delft) helpt wellicht een handje. Hij toonde aan dat het mogelijk is om een aantoonbaar veilige multifunctionele waterkering te ontwerpen.

Multifunctionele waterkeringen zijn keringen die niet alleen bescherming bieden tegen overstromingen van het achterland (primair), maar nog een tweede belangrijke functie vervullen (secundair). Historisch gezien is dit principe niet nieuw, denk hierbij aan wegen op de dijk of wonen op de dijk. Met het oog op toenemende druk op de ruimtelijke ontwikkeling in en rond steden gelegen aan een rivier of kustlijn zal er steeds meer vraag ontstaan naar het gebruik van de ruimte op en in de waterkeringen. Het wordt interessanter naarmate de verschillende functies van de waterkering ook constructief gecombineerd gaan worden tot een integrale variant. Een constructie die de secundaire functies van een waterkering vervult, werkt dan ook mee aan de sterkte van de waterkering.

Als afstudeeronderwerp aan de TU Delft is een ontwerp gemaakt voor een multifunctionele waterkering bestaande uit een parkeergarage in een dijk. De doelstelling van de studie was het vinden van een juiste methode om een aantoonbaar veilige multifunctionele waterkering te ontwerpen.

Schematische weergave van het ontwerp dat beschouwd is in het afstudeerwerk. (Beeld: Van Mechelen)

Waterveiligheid en overstromingsrisico zijn belangrijke begrippen voor een laaggelegen land als Nederland. Het combineren van functies op of in de waterkering mag de bescherming van het achterland tegen overstroming niet aantasten. Binnen de huidige methodiek voor het beoordelen van de veiligheid van waterkeringen worden objecten die de multifunctionaliteit vertegenwoordigen beoordeeld op de mate waarin ze de sterkte van de waterkering reduceren of de belasting verhogen. Als men een constructie in een dijk wil bouwen, neemt de constructie een zodanig groot gedeelte van de waterkering in beslag dat het niet meer mogelijk is om te spreken van een sterktereductie. De sterkte van de waterkering wordt in dat geval deels (of geheel) bepaald door de sterkte van de constructie en de interactie tussen het grondlichaam en de constructie.

Toetsingsmethode

Binnen het huidige Nederlandse toetsinstrumentarium voor waterkeringen is multifunctioneel gebruik van de waterkering mogelijk, maar toetsregels dienen in veel gevallen nog opgesteld te worden. Daarnaast zijn er de (strengere) Eurocodes die eisen stellen aan de constructieve veiligheid van alle mogelijke bouwconstructies. Voor het toetsen van waterkeringen vindt een verschuiving plaats van een semiprobabilistische naar een probabilistische methode. Deze verschuiving gaat samen met het voornemen om de normering van waterveiligheid te veranderen van een benadering gebaseerd op de overschrijdingsfrequentie naar een integrale faalkansmethodiek. Voor bouwconstructies is deze verschuiving naar een probabilistische methode (nog) niet waarneembaar. De verschuiving van een semiprobabilistische naar een probabilistische methode voor waterkeringen leidt tot een verschil tussen de methode gebruikt voor het toetsen van waterkeringen en voor het toetsen van bouwconstructies. Een belangrijk onderdeel van het ontwerpproces is dan de wijze waarop omgegaan wordt met een multifunctionele waterkering waarbij de bouwconstructie als een waterkering is op te vatten.

Verschil

Het constructieve ontwerp van de multifunctionele waterkering in het afstudeeronderzoek is getoetst met zowel de semiprobabilistische als de probabilistische methode om het verschil tussen beide methoden te kunnen waarnemen en beoordelen. Het resultaat met behulp van de semiprobabilistische methode hangt sterk af van de keuze voor de representatieve waterstand en de daarbij behorende veiligheidsfactor. Een combinatie van een waterstand met een al kleine kans van optreden én een veiligheidsfactor leidt ook tot een dubbele introductie van veiligheid in de berekeningen. Daarnaast verschilt de afhankelijkheid van de waterstand per faalmechanisme, waardoor er per faalmechanisme een wisselende veiligheidsmarge in de berekeningen wordt geïntroduceerd.

De probabilistische methode is toegepast om het ontwerp te toetsen door de faalkans te berekenen. Wanneer deze faalkans wordt vergeleken met de vereiste faalkans, valt op dat het ontwerp ruimschoots voldoet aan de vereiste faalkans. Met andere woorden, de eisen die een semiprobabilistische methode stelt aan het ontwerp, zijn te conservatief. De voornaamste reden is de keuze voor een representatieve waterstand. Het is lastig om een waterstand te bepalen waarbij wordt voldaan aan alle eisen, zonder een veel te conservatieve keuze te maken, vanwege het verschil in afhankelijkheid van de waterstand voor individueel faalmechanisme.

Conclusies

Uit dit onderzoek blijkt dat het toepassen van een semiprobabilistische methode in een conservatief ontwerp resulteert. Met de toepassing van een probabilistische methode kan winst behaald worden vanwege een minder conservatief ontwerp. Daarnaast resulteert een probabilistische methode in extra informatie over de faalkans ten opzichte van een semiprobabilistische methode. Deze informatie is nodig om een aantoonbaar veilig ontwerp te kunnen maken en daarom is het nodig de multifunctionele waterkering met een probabilistische methode te ontwerpen. De vraag naar multifunctionele waterkeringen zal in de toekomst zeker gaan toenemen als gevolg van een toenemende druk op de ruimtelijke ontwikkeling. Dit onderzoek toont aan dat de gevolgde methode geschikt is voor het aantoonbaar veilig ontwerpen van multifunctionele waterkeringen.

Hoogwaardige rookbeheersing in Delftse spoortunnel

Bij brand in een tunnel of ondergronds station zijn een snelle en veilige evacuatie van reizigers en personeel van het grootste belang. Dat vraagt om een effectieve rook- en hittebeheersing. In de Willem van Oranjetunnel en station Delft zorgen onder andere 76 grote stuwdrukventilatoren en een uitgekiend rook- en warmteafvoersysteem daarvoor.

“Rook- en hittebeheersing in een tunnel zijn in theorie niet heel ingewikkeld”, vertelt Stan Veldpaus van Colt International. “Bij brand in een tunnel gaan rook en hitte direct omhoog naar het plafond. Doe je niets, dan verspreiden ze zich vervolgens in beide richtingen. Om mensen veilig te kunnen evacueren en ervoor te zorgen dat de brandweer de brand kan bestrijden, wil je dat rook en hitte vanaf de brand slechts één kant op gaan. Dat kun je bereiken met zogeheten stuwdrukventilatoren die een luchtstroom genereren die zo sterk is dat de rook en hitte worden weggedrukt. Voor het berekenen van de benodigde ventilatiekracht daarvoor, maken partijen meestal gebruik van de rekensoftware ProTuVem.”

“Bovenstaande geldt voor een doorlopende tunnel. Is er echter sprake van een tunnel met een onderbreking, dan wordt een effectieve rook- en hittebeheersing veel complexer. Hier in Delft is dat het geval. Het station ligt ongeveer middenin de spoortunnel en sluit aan beide kanten aan op vier spoorbuizen, waarbij alles in open verbinding met elkaar staat. Dan volstaat de ‘standaard’ rekensoftware niet langer en moet je geavanceerder gaan rekenen. Wij hebben daarvoor zogeheten CFD-modellen gebruikt, waarbij CFD staat voor computational fluid dynamics. Met deze specialistische rekensoftware kun je de exacte geometrie, de brandlast en de voorgestelde ventilatie invoeren, waarna het model berekent of je daarmee aan de eisen voldoet.”

Stuwdrukventilatoren in de Amsterdamse Spaarndammertunnel. (Foto: Kingspan)

Extra ventilatiecapaciteit

Tjeerd Dierckxsens van ProRail voegt toe: “Een extra complicerende factor hier is dat we de bouw van de spoortunnel en het nieuwe station destijds te omvangrijk vonden om als één project op de markt te brengen. Daarom hebben we het werk in drie stukken opgeknipt. De eerste fase betrof de bouw van het nieuwe station, de ruwbouw van de vier tunnelbuizen en het verplaatsen van de twee sporen op het spoorviaduct naar twee van de vier tunnelbuizen, inclusief het aanbrengen van de benodigde installaties. Fase twee, die nu plaatsvindt, bestaat uit de afbouw van de overige twee tunnelbuizen, het aanbrengen van de resterende tunneltechnische installaties en het spoor in deze buizen en het afbouwen van het ondergrondse perron voor de sporen 3 en 4. De derde fase omvat het viersporig maken van het hele spoortracé tussen Den Haag en Delft Campus (voorheen Delft Zuid) en tussen Schiedam en Rotterdam.”

‘Bij de engineering diende wel rekening te worden gehouden met de viersporige eindsituatie.’

Dierckxsens vervolgt: “In fase één moesten weliswaar slechts twee van de vier tunnelbuizen gereed worden gemaakt voor het treinverkeer, maar bij de engineering diende wel rekening te worden gehouden met de viersporige eindsituatie. Dat maakte het extra lastig.” Veldpaus beaamt dat: “In de tunnelbuizen die in 2015 in gebruik zijn genomen hangen 38 grote stuwdrukventilatoren. Zoveel ventilatoren waren toentertijd niet nodig, maar wel als de tunnel straks viersporig is. Als je in de eindsituatie de ventilatie in een van de tunnelbuizen inschakelt, moet je rekening houden met de luchtkortsluiting die optreedt via de drie andere tunnelbuizen. Dat vraagt om extra ventilatiecapaciteit. In de tunnelbuizen voor spoor 3 en 4 komen straks ook 38 ventilatoren.”

Veilige evacuatie

Bij de engineering heeft Colt ook nagedacht over maatregelen tijdens de werkzaamheden gedurende fase twee. “Zolang de tunnelbuizen voor spoor 3 en 4 nog niet gereed zijn, zijn deze buizen aan de stationszijde afgesloten met zogeheten overheaddeuren, een soort grote garagedeuren”, legt Dierckxsens uit. “De besturing van de ventilatie bij calamiteiten in de tunnelbuis voor spoor 1 en 2 gaat ervan uit dat deze deuren gesloten zijn. Aangezien het voor de werkzaamheden vaak handig is dat ze open zijn, hebben we van de aannemer geëist dat er altijd een werknemer bij een geopende deur staat die hem bij een incident direct kan sluiten.”

Voor de rook- en hittebestrijding in het station zelf is Colt uitgegaan van een rook- en warmteafvoersysteem (RWA-systeem). Veldpaus: “Anders dan in de tunnelbuizen, waar we de rook- en hitte als het ware met een sterke luchtstroom wegdrukken, werken we in het station met een soort afzuigsysteem. Dat kan hier omdat de ruimtes in het station aanmerkelijk hoger zijn dan de tunnelbuizen. Met grote brandgasventilatoren die aan de zijkanten bovenin in het gebouw zitten, kunnen we enorme hoeveelheden lucht afzuigen. Dat zorgt ervoor dat de eerste meters boven de perrons en stationshal bij brand rookvrij blijven en er alleen rook en hitte aanwezig zijn vlak onder de plafonds. Daardoor is een veilige evacuatie mogelijk en kunnen de hulpdiensten zien waar de brandhaard is. De afgezogen rook voeren we onder andere via openingen boven het water van de Westvest af.”

Noodtrappenhuizen

Behalve de engineering van de rook- en hittebeheersing in de tunnel en het station heeft Colt ook de overdruksystemen in de acht noodtrappenhuizen ontwikkeld, die naast de tunnelbuizen liggen. De essentie hiervan is dat bij brand een grote luchtstroming in het trappenhuis wordt gecreëerd richting de tunnel, die ervoor zorgt dat er geen rook naar binnen kan dringen. Aangezien de trappenhuizen niet allemaal hetzelfde zijn uitgevoerd, heeft Colt verschillende overdruksystemen toegepast. Aan de westzijde van de tunnel ligt bijvoorbeeld een parkeergarage waarin een van de noodtrappen uitkomt. De geometrie is hier anders, waardoor een andere dimensionering en plaatsing van de installaties nodig was. Conform de wettelijke eisen werkt het overdruksysteem in elk noodtrappenhuis autonoom, met een eigen voeding, schakelkasten en ventilator.

Naast de overdruksystemen, het RWA-systeem en het tunnelventilatiesysteem zijn er ook nog andere voorzieningen aangebracht om de risico’s van brand te minimaliseren. Daarbij gaat het niet alleen om rookdetectie, maar bijvoorbeeld ook om een ‘hittelint’ boven de sporen naast de perrons. De warmtedetectoren in dit lint geven bij een te hoge temperatuur een signaal door dat er mogelijk sprake is van brand. Ook in de tunnelbuizen zitten branddetectoren. Door de gegevens van deze detectoren te combineren met de gegevens van het sonarsysteem – dat nauwkeurig de locatie van treinen vaststelt – kan de exacte locatie van een brandhaard snel aan de hulpdiensten worden doorgegeven.

‘Bij de engineering zijn we uitgegaan van de meest ongunstige situatie.’

“Bij het ontwikkelen van de rook- en hittebeheersingssystemen zijn we van alle mogelijke scenario’s uitgegaan,” zegt Veldpaus, “zoals een brandende trein in een tunnelbuis, een brandende trein in het station of brand in een van de commerciële ruimtes in het station. Verder hebben we ook rekening gehouden met de situatie buiten de tunnel. Zo moeten de ventilatoren de rook en hitte ook kunnen verdringen als er een storm met windkracht tien op een van de tunnelmonden staat. Bij de engineering zijn we uitgegaan van de meest ongunstige situatie en de maximale brandlast om er zeker van te zijn dat we in alle situaties het gewenste veiligheidsniveau kunnen garanderen.”

Waterwolftunnel

De Waterwolftunnel is onderdeel van de vernieuwde provinciale weg N201 tussen Hoofddorp en Amstelhoek. Hij gaat onder de Ringvaart van de Haarlemmermeer door en ligt op de grens van de gemeenten Aalsmeer en Haarlemmermeer.

(Foto: Flickr/European Roads)

De Waterwolftunnel heeft twee gescheiden buizen met elk twee rijstroken en een middentunnelkanaal, dat onder meer dient als vluchtroute. In totaal is de tunnel 1.450 meter lang. Het gesloten deel is 670 meter lang en gaat aan beide kanten over in een open tunnelbak van 300 meter. Aan de oostzijde is er na de open tunnelbak nog een korte tunnel met een lengte van 80 meter.

Slim

Bij de bouw van de tunnel heeft de aannemerscombinatie steeds voor slimme, economisch aantrekkelijke oplossingen gekozen. Voor de aanleg is met damwanden een bouwput gemaakt. Hierin is met onderwaterbeton een vloer gestort die onder een helling ligt. Door in deze vloer wapening aan te brengen, was een aparte constructievloer niet nodig en kon de tunnel minder diep worden aangelegd. De betonnen zijwanden van de tunnel zijn relatief licht uitgevoerd met een dikte van 0,4 meter. Ze maken de constructie waterdicht en verhogen de brandwerendheid. Ze zijn er niet op berekend om de gronddruk tegen te houden. Daarvoor zorgen de stalen damwanden.

De tunnel kruist niet alleen de Ringvaart, maar ook het Bovenlandengebied, een moeraszone waarin de beschermde rugstreeppad leeft. Om te zorgen voor voldoende leefgebied voor deze zeldzame pad is een deel van het tunneldak uitgevoerd als ecologische zone met veeneilandjes. (Foto: Heijmans)

Veiligheid

De Waterwolftunnel is de eerste provinciale tunnel in Noord-Holland die aan de wet Aanvullende regels veiligheid wegtunnels (Warvw) moest voldoen. Reden voor de provincie Noord-Holland en de betrokken gemeenten (Aalsmeer en Haarlemmermeer) om vanaf het begin sterk in te zetten op veiligheid. Ze wilden namelijk voorkomen dat er vertraging zou optreden als gevolg van het niet verlenen van een openstellingsvergunning. Daarom is onder andere gekozen voor een intensief traject rond opleiden, trainen en oefenen (OTO). Alle directbetrokkenen hebben een opleiding en training gehad en hebben vervolgens uitgebreid geoefend, deels met 3D-simulatieprogramma’s.

Doordachte samenwerking bij calamiteiten

Werkbare oplossingen door integrale aanpak veiligheid

Voor het Zuidasdok is een integraal veiligheidsplan ontwikkeld. Bij de totstandkoming zijn verschillende belangen en disciplines bij elkaar gebracht. Jasper Nieuwenhuizen, voorzitter van de werkgroep integrale veiligheid van de projectorganisatie Zuidasdok: “Het unieke is dat meerdere systemen integraal samenwerken. De veiligheidsplannen van drie opdrachtgevers komen hier bij elkaar. Er wordt niet naar ieder object afzonderlijk gekeken, maar naar het gebied als geheel.”

Jasper Nieuwenhuizen en Peter Bals, senior adviseur Proactie bij de Brandweer Amsterdam-Amstelland, waren al in de verkenningsfase bij het project betrokken en maken ook nu nog deel uit van de werkgroep Integrale Veiligheid, waarin naast de initiatiefnemers ProRailRijkswaterstaat en de gemeente Amsterdam ook de gebruikers zitting hebben (NSGVB, hulpdiensten en bevoegd gezag).

Jasper Nieuwenhuizen noemt de passagiersstromen bij het station als voorbeeld voor de integrale aanpak. “Het veiligheidsplan van de NS strekt zich uit tot de deur van het station. Dat van het gemeentelijk vervoersbedrijf (GVB) begint bij de halte. Beide zijn goed voor hun gebied, maar sluiten niet automatisch op elkaar aan. In het Integraal Veiligheidsplan (IVP) gaan we uit van voetgangersstromen in het hele gebied en dus niet per object of discipline.”

Op eenzelfde manier wordt naar een groot aantal veiligheidsaspecten gekeken, variërend van constructieve veiligheid tot sociale veiligheid en van tunnelveiligheid tot waterveiligheid (zie kader onderaan). Jasper Nieuwenhuizen: “We kijken in eerste aanleg naar het reduceren van gevaren. Op basis daarvan voeren we verbeteringen door. Dat leidt tot steeds robuustere plannen. Hierdoor zijn in de uitvoeringspraktijk waarschijnlijk minder wijzigingen nodig. Zo proberen we faalkosten te elimineren.”

Preventie in de planfase

Bij het reduceren van gevaren is de praktische inbreng van brandweer en hulpdiensten onmisbaar. Tegelijkertijd is het voor dergelijke organisaties zeker niet vanzelfsprekend dat zij zich mengen in de planfase van een project. Peter Bals: “Bij de brandweer hebben we net een strategische reis achter de rug die ertoe leidt dat we niet alleen ‘na de vlam’ willen kijken, maar ook ‘voor de vlam’. De kern van de brandweer is dat we in actie komen als het eigenlijk al te laat is. Dat wordt ook steeds duurder. Daar komt bij dat in het verleden in projecten vaak vertragingen ontstonden als gevolg van eisen van de brandweer. Door de brandweer heel vroeg in het proces te betrekken, kun je dat voorkomen.”

“Wij kunnen het abstracte denken van ontwerpers versterken vanuit onze concrete invalshoek”, vervolgt Bals. “Knelpunten kunnen we in de contracteringsfase oplossen. Zo kwamen we al vroeg tot de conclusie dat de bereikbaarheid voor brandweer en hulpdiensten tijdens de aanleg van de noordtunnel een groot knelpunt zou kunnen worden. Door het ontwerp en de fasering te optimaliseren is dit potentiële veiligheidsknelpunt in de voorfase al weggenomen Overigens zal de brandweer deze ‘stap naar voren’ ook in andere projecten gaan maken. We proberen deze werkwijze ook bij kleinere projecten in beeld te krijgen. Ideaal zou zijn als veiligheid al wordt meegewogen in de fase waarin een projectontwikkelaar een eerste voorstel aan de gemeente doet.”

Bestuurlijke consensus

De aanpak waarin zoveel disciplines in zo’n vroeg stadium bij het project zijn betrokken, is bijzonder. Al in 2009, toen vast kwam te staan dat de variant ‘Dok onder de grond’ gefaseerd zou worden uitgevoerd, werd tot de integrale aanpak besloten. In een bestuursovereenkomst, getekend door het ministerie van Infrastructuur en Milieu, de gemeente Amsterdam, de stadsregio Amsterdamen de provincie Noord-Holland, werd vastgelegd dat alle betrokken partijen gezamenlijk aan een integraal veiligheidsplan zouden werken. Jasper Nieuwenhuizen: “Voorheen is wel geëxperimenteerd met een Veiligheidseffectrapportage, maar dat is nooit goed van de grond gekomen. Deze aanpak voldoet wel aan de verwachtingen.”

Impressie dwarsdoorsnede van mogelijke eindsituatie voor A10 en spoor (trein en metro). Ook is de huidige A10 weergegeven. Dit wordt in de eindsituatie openbare ruimte. (Beeld: Projectorganisatie Zuidasdok)

Voorkomen dat het misgaat

Aanleiding voor het IVP was onder meer het rapport Sneller en beter van de commissie Elverding. Deze commissie onderzocht in 2008 waar het misgaat in de besluitvorming over infrastructuurprojecten en kwam met aanbevelingen om tot snellere en betere uitvoering van grote infrastructurele projecten te komen. De aanbeveling van de commissie Elverding om de besluitvorming te verbeteren door ‘een strakke procesbeheersing en kwaliteitsbewaking in alle fasen, onder meer door middel van een procesplan bij het begin van elke fase’, werd in Amsterdam opgepakt.

De belangen zijn dan ook groot. Zuidasdok is een enorm project, dat zich over een groot aantal jaren uitstrekt en in allerlei opzichten een enorme impact op de omgeving zal hebben. Jasper Nieuwenhuizen: “Het is een heel belangrijk gebied in Nederland, dat je niet zomaar ‘dicht’ kunt doen. Werken met de winkel open vergt extra voorbereidingen. Integraal kijken draagt bij aan het op een zo hoog mogelijk niveau bewaken van de kwaliteit.”

Definitie veiligheidsthema’s

Veiligheidsthema

Definitie

Arbeidsveiligheid

De veiligheid van personen die beroepshalve aanwezig zijn. In het kader van het IVP ligt de scope op bouwactiviteiten.

Bouwveiligheid

Veiligheid van werknemers en omstanders bij een bouwplaats (arbeidsveiligheid en omgevingsveiligheid bouw gecombineerd).

Brandveiligheid

Veiligheid van personen met betrekking tot brand en de gevolgen van brand voor een constructie.

Constructieve veiligheid

De veiligheid van personen met betrekking tot het bezwijken van of het ontstaan van schade aan een constructie.

Externe veiligheid transport

De kans om te overlijden als rechtstreeks gevolg van een voorval bij het transport van een gevaarlijke stof (via weg, water, spoor en/of leiding).

Fysieke veiligheid

Fysieke veiligheid is het gevrijwaard zijn (en het gevrijwaard voelen) van gevaar dat voortvloeit uit ongevallen van natuurlijke en gebouwde omgeving. Dit gevaar bedreigt materiële en immateriële zaken die de maatschappij waardevol acht, zoals leven en gezondheid van mens en dier, goederen, het milieu en het ongestoord functioneren van de maatschappij [NIFV].

Integrale veiligheid

Alle veiligheidsaspecten van een systeem in samenhang beschouwd.

Machineveiligheid

De veiligheid voor gebruikers en onderhouds- en bedienend personeel van machines.

Omgevingsveiligheid bouw

De veiligheid van personen, niet zijnde werknemers, in de omgeving van bouwwerkzaamheden.

Overige interne fysieke veiligheid

Interne fysieke veiligheid omvat alle veiligheidsthema’s van interne veiligheid, uitgezonderd sociale veiligheid. Toch blijven er enkele onderwerpen over:veiligheid bij ontruimingen zonder brand en veiligheid bij grote drukte (crowding).

Security

De bescherming of beveiliging van inrichtingen, personen en infrastructuur tegen moedwillige verstoringen.

Systeemveiligheid

De veiligheid van degenen die aanwezig zijn in het systeem (railverkeer, wegverkeer, vaarwegverkeer, etc.), zoals reizigers, personeel en overige aanwezigen in de nabijheid van het systeem.

Transferveiligheid

Veiligheid van de passanten en gebruikers die zich verplaatsen binnen de transferruimte van de Openbaar Vervoer Terminal OVT. Transferveiligheid valt binnen dit IVP uiteen in onderdelen van andere veiligheidsthema’s (onder meer brandveiligheid in de OVT, spoorwegveiligheid ter plaatse van perrons, veiligheid bij grote drukte, verkeersveiligheid binnen de OVT) en wordt niet separaat beschouwd.

Sociale veiligheid

De mate waarin mensen beschermd zijn en zich beschermd voelen tegen persoonlijk leed door misdrijven (criminaliteit), overtredingen en overlast door andere mensen.

Spoorwegveiligheid

Veiligheid op en rondom het spoorwegnet in Nederland, zowel van treinreizigers en passanten (wegen langs het spoor, spoorwegkruisingen) als werkers aan het spoor. De metro wordt beschouwd bij het thema spoorwegveiligheid.

Tunnelveiligheid

Veiligheid van personen in omsloten verkeersconstructies.

Waterveiligheid

Veiligheid van personen of objecten met betrekking tot hoog-water (ook als gevolg van het binnendringen in ruimten onder maaiveld).

Wegverkeersveiligheid

Veiligheid van verkeersdeelnemers, als gevolg van deelname aan het wegverkeer. Het openbaar vervoer bestaande uit bussen en trams wordt ondergebracht bij het thema wegverkeersveiligheid.

 

Chaos creëren om orde te scheppen

Vaak ontstaan de beste ideeën als er niet voortdurend van bovenaf wordt gestuurd. Diep van binnen weten we dat het loont om controle los te laten, maar toch voelen we de behoefte aan regie, zeker bij complexe vakgebieden als ondergronds bouwen. Is het zinnig om grip te willen hebben op de gecompliceerde werkelijkheid? Merten Hinsenveld (directeur COB) besprak het met Geert Teisman, hoogleraar aan de Erasmus Universiteit Rotterdam en gespecialiseerd in beslissingsprocessen in complexe systemen.

Merten: “Het COB werd in 1995 opgericht met een eenduidige doelstelling: het wegwerken van de achterstand in technische kennis op het gebied van geboorde tunnels. Dat doel is inmiddels gehaald. Het netwerk ontwikkelt zich nu verder en de laatste jaren blijkt er behoefte aan het oppakken van minder heldere en minder technische vraagstukken. Dat zijn vraagstukken waar participanten verschillende visies over hebben en waar een technische ‘best practice’ niet in het verschiet ligt. Ordeningsvraagstukken zijn hier een goed voorbeeld van. Maar ook: hoe kun je een contract zodanig in de markt zetten dat het leidt tot innovatie? Partijen worstelen daarbij met hun behoefte aan controle over het proces en het resultaat. Zo worden tunnelprojecten nu regelmatig met een DBFM-contract in de markt gezet, waarmee wordt aangestuurd op creativiteit, maar zijn er ook standaarden en voorschriften ontwikkeld, waardoor de bouwers weer aan handen en voeten worden gebonden. Hoe komen we uit dit dilemma tussen controle en loslaten?”

Geert: “Daar kom je niet uit; je kunt er alleen verstandig mee om leren gaan. Ook de samenleving als geheel zit in deze spagaat. Enerzijds maakt de toenemende complexiteit het moeilijker om grip te houden, terwijl we daar van nature wel naar verlangen, en anderzijds realiseren we ons dat juist die complexiteit ons verder brengt. In de jaren zestig nam infrastructuur bijvoorbeeld nog een bijna autonome positie in; een autoweg werd gewoon bedacht en gerealiseerd, punt. Gaandeweg werden er ook eisen gesteld vanuit de leefbaarheid, het milieu, de economie, enzovoorts. Er is geen sprake meer van een monofunctioneel ontwerp dat je op basis van een eenduidige definitie van het vraagstuk in een lijnproductie kunt omzetten. We moeten nu eisen uit verschillende domeinen combineren, domeinen die je in de vorige eeuw nog apart van elkaar kon ontwikkelen. Ondergronds bouwen biedt de potentie om de eisen mobiliteit en leefbaarheid te combineren. Rijkswaterstaat merkt hierbij dat vasthouden aan het motto ‘wij betalen, dus wij bepalen’ beperkt succes oplevert. De nieuwe vorm van orde (‘de markt, tenzij’) lijkt echter ook niet te werken. Dat komt doordat ook met deze handelswijze niet de belangrijkste eisen vervuld kunnen worden, namelijk die van gecombineerde kwaliteiten. Die eisen kunnen eigenlijk alleen gerealiseerd worden door co-creatie. Maar co-creatie impliceert dat je vooraf niet precies weet waar je uitkomt. Mensen proberen daar op allerlei manieren aan te ontkomen.”

Merten: “Zie je dat ook bij de grote bouwbedrijven? Ze nemen veiligheidsmensen in dienst, er komt een ICT-afdeling en een installateur; ze halen als het ware de hele keten naar binnen.”

Geert: “Ja, je ziet voortdurend dat mensen het werken in ketens zo vermoeiend vinden dat ze liever alles binnen hun eigen organisatie halen. Alleen haal je daarmee ook de ellende naar binnen, want intern ontstaat er evengoed verkokering. Mijn waarneming is, dat het niet uitmaakt of je de specialisaties extern of intern hebt. Als je in ketens werkt, kies je er expliciet voor dat je tot co-creatieafspraken moet komen met een partij die je niet in de hand hebt, bij intern werken heb je de illusie dat je de ander kunt aansturen.”

Merten: “Je hebt verkokering toch ook nodig, omdat je specialisten wilt die goed zijn in hun werk. Is het niet zo dat je vooral begrip voor de ander moet kweken? Dus niet een civiel ingenieur dwingen om zich ook op het gebied van elektrotechniek te ontwikkelen, maar ervoor zorgen dat er tussen die disciplines wederzijds begrip is?”

Geert: “Ja, je moet nadenken over hoe je de verbinding kunt leggen. Binnen het programma Leven met Water hebben we hiervoor de leertafel ontwikkeld. Gewoon wetenschappers bij elkaar aan tafel zetten, werkt niet: ze praten in hun enthousiasme langs elkaar heen en de kennis blijft naderhand ook niet altijd hangen. De essentie van de leertafel is om vanuit een concreet praktijkvraagstuk een aantal bijeenkomsten te beleggen waar praktijkmensen met wetenschappers in gesprek gaan. De wetenschappers reflecteren vanuit hun specifieke eenzijdige blik op de werkelijkheid. Er ontstaat hierdoor een momentum van gedeelde kennisontwikkeling, want de wetenschappers vinden het leuk om vanuit diverse hoeken kennis toe te voegen en de praktijkmensen kunnen de kennis combineren tot een geheel. Een leertafel is een goede manier om het niveau van gedeelde kennis te verhogen zonder dat je mensen dwingt om zich in ander vakgebied te verdiepen.”

Merten: “En je hebt de praktijkmensen nodig om de kennis te laten landen in de concrete werkelijkheid?”

Geert: “Klopt. Maar het gaat ook om het creëren van chaos, het maken van een onverwachte combinatie van actoren. Dan kunnen er namelijk vernieuwingen plaatsvinden. The Strip, het centrale gebouw van de High Tech Campus Eindhoven, is op dit principe gebaseerd. Het gebouw is puur gericht op informele ontmoetingen van kenniswerkers en praktijkmensen, omdat daaruit onverwachte innovaties voortkomen. Je omarmt chaos als hulpmiddel en je accepteert dat sommige innovaties bij anderen terechtkomen.”

Merten: “Na zo’n leertafel gaat iedereen weer zijn eigen weg. Hoe kun je de kennis vasthouden, zodat je steeds een stap verder komt?”

Geert: “De consolidatie van kennis is een enorme uitdaging. Je hebt eigenlijk mensen nodig die in staat zijn om tijdens een bijeenkomst de kennis op te zuigen en deze de volgende keer kort en bondig terug te geven, zodat de groep direct verder kan. Maar je moet aanvaarden dat je kennis niet kunt vastleggen. Je kunt het wel letterlijk vastleggen, maar dan is het dode kennis, omdat het niet meer in hoofden van mensen zit. Je moet ook aanvaarden dat dat wat je opschrijft, door de lezer heel anders begrepen wordt. Mensen lezen alles vanuit hun eigen frame, wat overigens soms juist innovatie oplevert.”

Merten: “Ligt het ook aan het individu: dat we gewoon veel tijd nodig hebben om ‘cocreatief’ te leren werken? Je hebt tijd nodig om specialist te worden en om interactief te kunnen communiceren. Je houdt bijna geen tijd meer over. Zitten we niet aan de grens van wat menselijk mogelijk is?”

Geert: “Dat zou kunnen, maar er zijn mensen die zeggen dat de nieuwe generatie al meer geschikt is voor co-creatie. Jongeren zijn opgegroeid met netwerken, social media, met ‘interconnectiviteit’. Ze kunnen vaak sneller schakelen en vinden dat ook een onderdeel van hun eigen professionaliteit. Daarmee kun je een enorme slag maken in toenemende complexiteit. Andere zeggen weer dat jongeren te oppervlakkig zijn en dat je meer diepgang nodig hebt. Het blijft dus een open vraag.”

Merten: “Rijkswaterstaat wil ook toe naar co-creatie, maar stelt zich wel op als opdrachtgever. Kort gezegd: de eisen worden functioneel opgesteld en de invulling wordt aan de markt overgelaten. Moeten opdrachtgever en opdrachtnemer voor co-creatie meer als collega’s gaan opereren? Vereist co-creatie dat Rijkswaterstaat zijn rol als opdrachtgever meer loslaat?”

Geert: “Niet per se. Om co-creatie voor je eigen achterban verteerbaar te maken, moet je wel een formele scheiding aanbrengen. Maar vervolgens ga je informele verbindingen aan en binnen dat netwerk vindt co-creatie plaats.”

Merten: “Hoe zorg je er dan voor dat oplossingen die vanuit dat informele netwerk ontstaan niet direct teruggestuurd worden door formele contractmanagers?”

Geert: “De uitdaging zit hem inderdaad in het vormgeven van de overgang tussen de binnen- en buitenwereld. De buitenwereld vraagt om transparantie en zekerheid (‘een besluit is een besluit’), maar je wilt slimme voorstellen vanuit de binnenwereld ook kunnen benutten. Bij het programma Ruimte voor de Rivier hadden ze hiervoor een zogeheten omwisselbesluit: in principe doen we wat we hebben afgesproken, maar als er een beter voorstel komt dat wel de intentie maar niet de letter van het contract volgt, kunnen we een nieuw besluit nemen.”

Merten: “Hoe regel je dit bestuurlijk?”

Geert: “We hebben gemerkt dat degene die het oorspronkelijke besluit heeft genomen niet ontvankelijk is om mee te bewegen naar het nieuwe besluit. Daarom heb je bijvoorbeeld een commissie van ‘wijzen’ nodig, of je kunt burgers laten beoordelen. Zo behoudt de binnenwereld de ruimte om tot vernieuwing te komen, maar houd je tegelijkertijd de transparantie hoog door de externe toets. Ook voor ondergronds bouwen biedt dit kansen. Je moet ondergronds bouwen niet alleen als uitvoeringsmethode zien, maar ook neerzetten als een oplossing waarop burgers trots kunnen zijn; ondergronds bouwen kan van toegevoegde waarde zijn voor hun leefomgeving.”

Dit was de Onderbreking Tunnels en veiligheid

Bekijk een ander koffietafelboek: